Molecular Mechanism of Cold Tolerance of Centipedegrass Based on the Transcriptome
2023年05月09日 10:29



DOI: doi.org/10.3390/ijms24021265

发表期刊:International Journal of Molecular Sciences

链接:https://www.mdpi.com/1422-0067/24/2/1265

作者:Yingjie Liu1,2,†, Yi Xiong1,†, Junming Zhao1, Shiqie Bai2, Daxu Li2, Limin Chen2, Junjie Feng1, Yingzhu Li2, Xiao Ma1,* and Jianbo Zhang2,*

Abstract:Low temperature is an important limiting factor in the environment that affects the distribution, growth and development of warm-season grasses. Transcriptome sequencing has been widely used to mine candidate genes under low-temperature stress and other abiotic stresses. However, the molecular mechanism of centipedegrass in response to low-temperature stress was rarely reported. To understand the molecular mechanism of centipedegrass in response to low-temperature stress, we measured physiological indicators and sequenced the transcriptome of centipedegrass under different stress durations. Under cold stress, the SS content and APX activity of centipedegrass increased while the SOD activity decreased; the CAT activity, POD activity and flavonoid content first increased and then decreased; and the GSH-Px activity first decreased and then increased. Using full-length transcriptome and second-generation sequencing, we obtained 38.76 G subreads. These reads were integrated into 177,178 isoforms, and 885 differentially expressed transcripts were obtained. The expression of AUX_IAA and WRKY transcription factors and HSF transcription-influencing factors increased during cold stress. Through KEGG enrichment analysis, we determined that arginine and proline metabolism, plant circadian rhythm, plant hormone signal transduction and the flavonoid biosynthesis pathways played important roles in the cold stress resistance of centipedegrass. In addition, by using weighted gene coexpression network analysis (WGCNA), we determined that the turquoise module was significantly correlated with SS content and APX activity, while the blue module was significantly negatively correlated with POD and CAT activity. This paper is the first to report the response of centipedegrass to cold stress at the transcriptome level. Our results help to clarifythe molecular mechanisms underlying the cold tolerance of warm-season grasses.